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Abstract: Digital pathology is being transformed by artificial intelligence (AI)-based patho-
logical diagnosis. One major challenge for correct AI diagnoses is to ensure the focus quality
of captured images. Here, we propose a deep learning-based single-shot autofocus method for
microscopy. We use a modified MobileNetV3, a lightweight network, to predict the defocus
distance with a single-shot microscopy image acquired at an arbitrary image plane without
secondary camera or additional optics. The defocus prediction takes only 9 ms with a focusing
error of only ∼1/15 depth of field. We also provide implementation examples for the augmented
reality microscope and the whole slide imaging (WSI) system. Our proposed technique can
perform real-time and accurate autofocus which will not only support pathologists in their daily
work, but also provide potential applications in the life sciences, material research, and industrial
automatic detection.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In 2018, Google announced an augmented reality microscope (ARM) with real-time artificial
intelligence integration for cancer diagnosis [1]. As the microscope is the most important tool for
pathological diagnosis, the ARM has the potential to decrease the variability of pathological
assessments and to alleviate the labor shortage of trained pathologists in regions such as rural
areas [2]. However, defocus blur can greatly deteriorate the image quality and introduce tissue
detail loss, thereby decreasing the reliability of the ARM or related AI-based microscopes. For
ARM, defocus blur can occur due to the optical path length difference between the eyepiece ports
and the camera port [3]. Pathologists are not trained to adjust the parfocal of the microscope
and keeping the camera focused while reviewing the slides from the eyepiece simultaneously is
difficult in practice.

US Food and Drug Administration (FDA) announced the approval of the first whole slide
imaging (WSI) system for primary diagnosis in surgical pathology [4] in 2017. The WSI system
has undergone an exponential period of growth for quantitative and streamlined slide reviewing
[5]. We can regard the WSI system as a motorized high-capacity microscope with autofocus and
auto-slide loading function. Although robust and high-throughput WSI systems are commercially
available, their scanning speed is slow and their acquisition of well-focused digital slides remains
inconsistent [6,7]. Pre-scanning a sample to acquire a focus map is the most adopted autofocus
method for current WSI systems [8]. The focus map surveying requires z-stack acquisitions for
focus plane estimation. Yet, the axial scanning of multiple images is time-consuming. Another
issue is that skipping tiles can shorten the focus map surveying time at the cost of focus map
accuracy [8].

In addition to the conventional time-consuming focus searching method through axial scanning,
a variety of new autofocus methods for microscopy have emerged in recent years, which can
be divided into three categories. The first category introduces additional illumination sources
[9–13] and cameras [14–16] to the original microscope light path for defocus estimation. For
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example, the Nikon Perfect Focus System introduces an additional infrared LED and a linear
sensor to track the position of the slides [9]. This method adds cost and complexity to the system
and only works for 2D thin slides. The second category is image-based and requires no additional
optics but multiple shots for defocus estimation [17–19]. For example, Dastidar et al. use the
difference of two shots at different focal planes and deep learning for defocus estimation [17]. The
third category generates a virtual in-focus image according to the input blurry image using deep
learning instead of estimating the defocus distance [20–24]. These methods require no additional
hardware or multiple shots to refocus the image. For example, Wu et al. trained a network to
virtually refocus a two-dimensional fluorescence image onto a user-defined focal plane within the
sample [20]. Luo et al. use a deep learning-based offline autofocusing method that efficiently and
blindly autofocus a single-shot microscopy image of a specimen that is captured at an arbitrary
out-of-focus plane [24]. An image-generating approach would be more time-consuming as the
image size increases. Also, there are always some doubts about virtually generated images and
they may not be accepted for critical tasks.

In this paper, we demonstrate a deep learning-based single-shot autofocus method without any
modifications to the original microscopy system for focal plane estimation. This approach only
requires one image captured at an arbitrary plane by the inherent camera of the microscope to
determine the focal plane. One can freely choose the motorized Z-stage, piezoelectric stage, or
the tunable lens to finish the focus adjustment. Our novel method shows that a neural network
can be trained to predict how far out of focus a microscope is, based on a single image taken at an
arbitrary defocus distance. In the network’s training phase, a motorized stage is used to collect
z-stack images to train a modified MobileNetV3_small [25], a lightweight neural network, and
achieves a 1/15 depth of field (DOF) focusing error of each 672*672 image patch. By measuring
several image patches in one high-resolution image, the final focusing accuracy and robustness
can be further improved.

We provide a specific autofocus implementation scheme on the ARM as an application example.
Furthermore, we demonstrate our autofocus method can also be applied to focus map surveying
for WSI system. We believe our work can help make AI the technological ‘right hand’ of
pathologists. Our single-shot autofocus method is universal and can be applied to other imaging
fields such as time-lapse live-cell imaging, and material research. Not limited to microscopy, it
can also find future applications in industrial depth estimation and autopilot software.

2. Experiments and results

2.1. Single-shot autofocus for augmented reality microscopy

ARM overlays AI-generated information onto the current view of the sample in real-time,
enabling seamless integration of AI into routine pathological workflows [1]. One of the serious
problems encountered by this system in clinical trials is that defocused images lead to unreliable
AI-diagnosis results, as an autofocus function is essential for ARMs to function. Another
complaint is that an ARM can be too high for a comfortable sitting posture since the two parallel
light paths (i.e., the image acquisition layer and AR projection layer) add to the height of the
benchtop microscope as shown in Fig. 1(a).

Therefore, we aim to make improvements to the ARM to create a more practical system. First,
we remove the image acquisition layer in the parallel light path and place the camera in the
standard camera port on top of the microscope as shown in Fig. 1(b). This reduces the original
height increase of the ARM by half. We also use two crossed polarizers to block all lights from
the ARM screen from entering the camera. Second, we add an autofocus function using a deep
learning network to estimate the defocus distance from a single image captured at an arbitrary
image plane. Then, we use the liquid tunable lens to adjust the focus rapidly to complete the
autofocus process. Our modified ARM is based on the Olympus BX43 microscope and the
Lumenera Lt425 camera with a resolution of 2048*2048 pixels. The model of the tunable lens is
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Fig. 1. Autofocus for ARM. (a) Setup scheme of the original ARM. The image acquisition
layer and AR projection layer are added to a conventional microscope. First, the raw image
captured by the camera is sent as input for AI processing. The outcome AR contents, for
example, contours and text, are sent to the AR display. The user can observe the raw image
overlaid with AR contents at the eyepiece port thanks to the beam splitters. (b) The setup
scheme of our autofocus ARM. We install the camera and the tunable lens at the standard
camera port of the conventional microscope. Only the AR projection layer is inserted into
the infinity space. We use a pair of crossed polarizers to block the light of AR display
from entering the camera. (c) Workflow of the original ARM: pathology AI algorithms are
applied to the raw image without autofocus. (d) Workflow of our autofocus ARM: we first
use a modified MobileNetV3 to estimate the defocus distance of the raw image. Then, we
adjust the image focus through the liquid tunable lens. The in-focus image is then captured
as the new input for pathology AI algorithms.

the Optotune EL-16-40-TC with a 16 mm aperture. A customized 0.4X adaptor connects the
tunable lens and with the camera port. The augmented reality screen is the Sony ECX335S
microdisplay. Figure 1(c) and (d) compares the workflow between the original ARM and our
autofocus ARM. An immunohistochemistry (IHC) image captured by the original ARM at an
arbitrary axial plane under a 10X/NA0.3 objective lens is directly sent for IHC AI processing.
On the other hand, for our autofocus ARM, the captured image is first cropped to seven patches
sized 672*672. We then predict the defocus distance of the seven patches respectively using a
pre-trained defocus distance estimation network, a lightweight deep learning network modified
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from the MobileNetV3_small [25]. The tunable lens is responsible for focus adjustment according
to the averaged predicted defocus distances. In Fig. 1(c) and (d), we also compare the IHC
AI-detection [2] results of the view indicated by the red box for the image before autofocus and
the autofocused image. In the raw image, only 170 positive tumor cells and five negative tumor
cells are detected. In the autofocused image, 13,370 positive tumor cells and 952 negative tumor
cells are detected. We present a partially enlarged image for a better visual perception. Please
refer to Appendix B for more detail about our IHC AI algorithm.

As shown in Fig. 1(d), the defocus prediction network is based on MobileNetV3_small [25], a
lightweight deep learning network, which is suitable for the real-time autofocus requirement of
ARM. We make the below modifications to the original MobileNetV3_small: First, we change
the input size to 672*672 from 224*224 to cover a larger field of view for reliable prediction.
Second, we also change the classification output to regression output. In the training phase,
taking the autofocus under a 10X objective lens as an example, we capture focal stacks of in-focus
and defocus images using the HeidStar HDS-BFS-BX43-PRO-1, a motorized Olympus BX43
microscope equipped with a 10X/NA0.3 objective lens. The testing instrument or the autofocus
ARM has the same setup as the training data collection instrument except for the stage of the
latter is motorized. We capture 1500 z-stacks of pathological images, including IHC, Thinprep
Cytology Test (TCT), as well as Hematoxylin and Eosin (H&E) slides in total. The same number
of focus stacks are taken for each of the three pathological image types (IHC, TCT, HE). We
divide the data into training, validation, and prediction sets at a ratio of 8:1:1, respectively. Each
z-stack contains 25 images ranging from -36 µm to +36 µm with a step size of 3 µm. The “-“
is facing away from the objective lens and “+” is facing the objective lens. Each raw image is
cropped to seven 672*672 patches, which is the input size of the network. The axial step size,
3 µm, is not small enough compared to the 10 µm depth of field of the 10X/NA0.3 objective.
To achieve better continuity of the defocus level when capturing z-stack images, we alternately
capture -37 µm to +35 µm, -36 µm to +36 µm, -35 µm to +37 µm. To label each image with its
defocus distance, we use a Brenner Gradient [26,27] to locate the focal plane with subpixel
resolution. The label value is the ground truth of the defocus distance for the image.

We train four autofocus networks in total, one model each trained for IHC, TCT, and H&E, and
one mixed model trained with all mixed data. As shown in Fig. 2(a)-(c), the focusing error of the
IHC, TCT, and H&E models are 0.82± 0.61 µm, 0.73± 0.75 µm, and 0.73± 0.61 µm respectively.
The mixed model provides the best autofocus performance with a focus error of 0.68± 0.58 µm,
as shown in Fig. 2(d). The depth of field of the 10X/NA0.3 objective lens is 10 µm.

Figure 2(a-d) indicates that not only can we distinguish different degrees of defocus but also
positive defocus from negative defocus. We will further discuss the mechanism of distinguishing
positive and negative defocus with a single shot in the Discussion section.

We choose the MobileNetV3-small after careful comparison. As shown in Fig. 2(e), we
compare the following eight popular deep learning networks, including deep and heavy networks
as well as lightweight networks using H&E data: MobileNetV3-small, MobileNetV3-large [25],
ResNet50 with a ghost module [28,29], DenseNet121 [30], ResNet50 [28], MobileNetV3-small
with a ghost module [29], MobileNetV3-small with an FFT module [31], and ShuffleNetV2
[32]. MobileNetV3-small has just half number of parameters of MobileNetV3-large. In the end,
MobileNetV3-small returns the best results.

The above deep learning networks we choose are among the most cited networks on classifica-
tion, object detection and semantic segmentation in recent years. We can divide these networks
into two types: heavy networks such as the ResNet50 and DenseNet121 and lightweight networks
such as the MobileNetV3 and ShuffleNetV2. The ghost module and FFT module are integrated
into the architecture of the ResNet50 and MobileNetV3 with verified performance improvement
[29,31]. The same training data (100 z-stacks of HE images) and same training conditions (100
training epochs, Adam optimizer, multistep learning strategy and smooth L1 loss function, etc.)
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Fig. 2. Autofocus performance of the modified MobileNetV3 small on test data. (a)-(d)
Scatter plots show the testing performance of the autofocus models trained by IHC, TCT,
H&E and mixed data separately. (e) Autofocus performance comparison of eight selected
deep learning networks. (f) Different input image size lead to different autofocus performance.
(g) Inference time versus input image size. The red scale bars in (a)-(d) indicate 100 µm.

are configured to guarantee a relatively fair comparison. Figure 2(e) shows that most of the testing
networks demonstrate good defocus estimation ability after the training (mean error < half DOF).
The MobileNetV3_small is the one which masters the defocus estimation ability. We believe
that this benefits from the advanced design of MobileNetV3: the optimal number of convolution
kernels and channels obtained using the NetAdapt, inherited depth separable convolution and
residual structure with linear bottleneck from V1 and V2, and the newly introduced activation
function hard-swish which is verified with the ability to effectively improve the accuracy of the
network [25].

Figure 2(f) shows that a larger input image size gives a more accurate output. However, the
inference time increases exponentially as the input image size increase as shown in Fig. 2(g). We
choose input size as 672*672 as a tradeoff between accuracy and efficiency.

The autofocus procedure on an ARM takes 59 ms in total: 25 ms for capturing an image
and removing noise with a 3*3 median filter, 9 ms for defocus estimation, and 25 ms for focus
adjustment with the tunable lens. The testing computer runs on Linux and has an Intel(R)
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Xeon(R) CPU E5-2680 v4 @ 2.40 GHz. One Tesla P40 GPU (24G memory) is assigned to the
autofocus module.

2.2. WSI focus map surveying using our single-shot autofocus method

WSI systems automatically image the whole slide, turning a physical slide into a digital one.
This enables doctors to stay away from the microscope to conduct remote pathological diagnoses
and consultations. The most adopted autofocus method for WSI system is to acquire a focus
map in the beginning. As shown in Fig. 3(a), an external camera captures a scout image of the
slide. Then, focus points spacing over the entire sample excluding the background are selected
automatically. At each focus point, conventionally, the system will capture a z-stack image to
find the best focal plane. By interpolating the coarse focus map, a full focus map that guides the
scanning for sharp WSI output can be obtained.

Fig. 3. Comparison between conventional and our focus map surveying method on WSI
system. (a) Workflow of focus map surveying method. (b) Comparison of conventional
defocus estimation method (top) by acquiring a z-stack and our single-shot deep learning
approach (bottom). (c) The scatter plot shows the testing results of autofocus performance
of our approach on a WSI system equipped with a 20X/NA0.75 objective lens. (d) Time-
consumption comparison between conventional focus map surveying method and ours.

The proposed single-shot autofocus network can be implemented on the WSI system as well,
making the autofocus process of WSI much more efficient. Since WSI system already has a
built-in focus adjustment module, such as the motorized Z-stage or piezoelectric stage, no liquid
tunable lens is required (unlike the previously mentioned autofocus ARM). Hence, we only need
to introduce the defocus prediction network for WSI autofocus.

The conventional autofocus method, as shown in Fig. 3(b), locates the focal plane within a
z-stack image by evaluating the image’s sharpness. However, scanning the z-stack images is very
time-consuming since it requires multiple (e.g. 10) axial mechanic moves and image acquisitions.
We use the proposed single-shot autofocus method for focus map surveying. High accuracy of
defocus distance estimation can be achieved in just 34 ms for each focus point, at least 25 times
faster than conventional methods. We retrain the autofocus network for WSI system equipped
with a 20X/NA0.75 objective lens by capturing 1,000 H&E z-stacks for model training. Each
z-stack ranges from -10 µm to 10 µm with a step size of 0.5 µm. We crop out nine 672*672
patches from each raw image and use image rotation plus image flipping for data augmentation.
The model structure is the same as the modified version for our autofocus ARM. We use another
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300 z-stacks for testing, as shown in Fig. 3(c), and get a focus error of 0.14µm±0.12 µm. The
depth of field of the objective is 1 µm.

Figure 3(d) shows the comparison of the time consumed to obtain the focus map under different
amounts of focus points between the conventional z-stack autofocus method and ours. It indicates
that as the focus points of the focus map increase, the sampling of focus map will be more refined,
but the time taken will increase significantly. Our method needs less than 19% of conventional
focus map surveying time and spends most of the time (∼85%) on X-Y movement.

Figure 4 shows a real example of a focus map acquired by our autofocus method. Figure 4(a) is
the thumbnail image of a Lymph node H&E sample. We acquire the focus map of a 10mm*10 mm
area as indicated by the red box in Fig. 4(a). For comparison, we survey two 16*16-points focus
maps using our method and conventional method respectively. The results are shown in Fig. 4(b)

Fig. 4. Actual focus map surveying example using our single-shot autofocus approach. (a)
Thumbnail image of the Lymph node H&E slide. The red box indicates the focus map
surveying area. (b) Focus map acquired using our deep learning autofocus method. (c) Error
map of the focus map using the Brenner Gradient-based z-stack searching method as ground
truth. (d) Scanned image using our autofocus approach at the point indicated with a black
triangle in c. (e) Scanned image using our autofocus approach at the point indicated with a
red triangle in c. Red arrows in Crop1 and Crop2 indicate areas at different focal planes.
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with grey color indicating our method and blue color indicating conventional method or ground
truth. We use the scanning trajectory indicated by red arrows in Fig. 4(b) to ensure that every
two adjacent scanning points are also adjacent in the actual spatial position during the scanning
process. Since the difference of the defocus distance of adjacent points will not be too long,
compared to the Zigzag scanning trajectory, our trajectory can prevent the defocus of the next
focus point from exceeding the prediction range of the defocus prediction network when changing
lines. Figure 4(c) shows the error map, which is the difference between the focus map obtained by
our method and the ground truth. The mean error of the focus map acquired with our approach is
0.28µm±0.32 µm. The depth of field of the 20X/NA0.75 objective lens used is 1 µm. From the
error map, most focus points have a focus error within 0.5 µm such as the black arrow indicated
points (x=8,y=15). The red arrow indicated point (x=13,y=13) in Fig. 4(c) has a focus error of
-1.18 µm, which is larger than the depth of field. According to our focus map, we scan the entire
slide to acquire the whole slide image. We show the scanned image of the points at the black and
red arrows pointed regions on Fig. 4(c) in Figs. 4(d) and (e), respectively. Figure 4(d) shows a
typical successful case of autofocus with a focus prediction error of -0.02 µm. We can observe
that the cropped images are successfully focused. In Fig. 4(e), we show a typical “failure” case
with a focusing error of -1.18 µm. However, we can find that this image contains many thick
areas (pointed by red arrows in Crop1) and folded areas (pointed by red arrows in Crop2) in
Fig. 4(e). Crop1 and Crop2 both have a size of 672*672. We argue that in this case, the ground
truth calculated by the conventional z-stack searching does not serve as a universal standard
solution. We recommend an axial scanning near this plane to get a composite all-in-focus image.
The advantage of our patch sampling approach is that the predicted defocus distances of the seven
sub-field-of-views (672*672) can tell us the focus distribution and variation of the original image
(2K*2 K). We have two strategies when handling different samples including flat, uneven, and
tilted ones. First, if the variation of the predicted defocus distances is smaller than the depth of
field of the objective lens. We consider the field of view is even and suggest using the averaged

Table 1. Comparison of the state-of-the-art autofocus methods for microscopy

Method Strategy Deployment
Complexity

Optical
System

Focusing
Error(um)

Focusing
Error/DOF

Pinkard [10] Modified illumination (extra
LEDs)+Single-shot deep
learning (FFT as input)

⋆⋆⋆⋆ 20X/NA0.5
DOF=2.6µm

1.38 5.3/10

Jiang [18] Modified illumination (extral
LEDs)+Single shot deep
learning
(three-domain-image as input)

⋆⋆⋆⋆ 20X/NA0.75
DOF=1µm

0.21+ 0.17 2.1/10

Dastidar [17] Two shots at different axial
planes as deep learning
inputs

⋆⋆ 20X/NA0.75
DOF=1µm

0.19+ 0.18 1.9/10

Zhang [13] Separate autofocus module
based on laser triangulation
(extra laser
illumination+ secondary
camera).

⋆⋆⋆⋆ 50X/NA0.55
DOF=1.96µm

0.2 1.0/10

Liao [11] Modified illumination (extra
LEDs)+ autocorrelation
analysis.

⋆⋆⋆⋆ 20X/NA0.75
DOF=1µm

0.08 0.8/10

Ours Single shot at arbitrary axial
plane as deep learning input

⋆ 20X/NA0.75
DOF=1µm

0.14+ 0.12 1.4/10

10X/NA0.3
DOF=10µm

0.68+ 0.58 0.68/10
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defocus distance to guide the focus adjustment. Second, if the variance of the predicted defocus
distances is larger than the depth of field of the objective lens. We consider the field of view is
uneven and suggest an axial scanning according to the variation range of the predicted defocus
distances.

We compare our autofocus method with the state-of-the-art autofocus method for microscopy
in Table 1 including deep learning-based and non-deep learning-based methods. DOF stands
for depth of field of the objective lens. Since these approaches don’t have exactly the same
experiment setup (e.g. magnification, NA, DOF), we use the ratio of focusing error to DOF for
a relatively fair comparison. From Table 1, our single-shot autofocus method has the highest
focusing accuracy among the deep-learning-based methods and requires the least modification to
the conventional microscope.

3. Discussion

In the scatter plots shown in Fig. 2 and Fig. 3, our single-shot deep learning autofocus method
distinguishes the positive defocus and the negative defocus of the sample very well. However,
when we use blur kernels (e.g. Gaussian blur) to simulate an out-of-focus image, there is
no difference between the images on both sides of the focal plane, making it impossible to
distinguish the defocus direction. The real-world defocus, which contains axial asymmetric
spherical aberration and chromatic aberration, is more complicated than these common simulation
methods. Based on our results, we deduce that the asymmetry allows distinguishing the focus
direction of the real-world defocus image. To evaluate the asymmetry, we simulated the point
spread functions (PSF) of different wavelengths at different focal planes in Fig. 5(a) with Zemax
software by ray tracing. The objective lens is 10X/NA0.3.

As shown in Fig. 5(a), the PSFs are asymmetric on both sides of the focal plane. On the other
hand, at the same focal plane, the PSFs of different wavelengths are also different. And this is
where chromatic aberration comes from. We believe the asymmetric spherical and chromatic
aberration is detectable by regular cameras (e.g. 5.5 µm pixel size), hence making the defocus
directions distinguishable. In Fig. 5(b), we show the H&E images at different focal planes under
a 10X/NA0.3 objective lens. We can observe color differences, especially at the white blank
areas, at -20 µm and 20 µm defocus planes.

There are many autofocus techniques for microscopy, such as using additional autofocus
illumination optics for defocus distance estimation [9–12]. However, many autofocus methods
are not suitable for ARM. For example, Pinkard et al. used one or a few off-axis LEDs to guide
defocus distance prediction with a single-shot using deep learning [10]. This is suitable for high
NA objective lenses, such as autofocus for WSI system. As the NA shrink for low magnification
lens such as 10X and 4X, the room left for off-axis LED is very small. Also, the focusing accuracy
will decrease as the NA shrinks. However, for ARM, due to the depth-of-focus difference between
eyepiece and camera port, 4X and 10X are the applications that need autofocus most. And
additional illumination sources are not readily available as plug-and-play modules for current
microscopes used in pathology. Tathagato [17] proposed using the difference image of two-shot
for defocus distance prediction using deep learning. The required multiple shots at different focal
planes are not efficient for the ARM, which has a strong requirement for real-time output. In this
paper, we propose a single-shot autofocus method for ARM using a lightweight deep learning
network without introducing additional illumination sources or cameras. We install the liquid
lens before the camera to solve the parfocal problem. We do not choose the motorized z stage or
install focus adjustment hardware connected with the objective lens [33,34] to adjust the lens
focus since this does not decouple the autofocus for the user from the camera. The liquid lens is
not the only option for rapid focus adjustment. Alternatively, a piezoelectric stage in front of the
camera or an autofocus camera with a built-in electric stage for sensor axial movement are also
efficient choices for fast autofocus. Shortening the optical stack of the original ARM does not



Research Article Vol. 13, No. 1 / 1 Jan 2022 / Biomedical Optics Express 323

Fig. 5. Understand the single-shot autofocus. (a) shows Zemax simulated PSFs of
different wavelengths at different focal planes. (b) shows the real-world defocus images at
corresponding focal planes as (a). The objective lens is 10X/NA0.3.

impact the autofocus performance. This design change helps make more room for the installation
of the liquid lens or other autofocus tools. Another advantage is that shortening the stack is more
user-friendly for pathologists by reducing the height of the microscope.

For focus map surveying of WSI system, the conventional method conducts axial scanning to
find the focus, which is not efficient. However, our deep learning method requires only a single
shot to predict the defocus distance of the current field of view. One can crop more than seven
images (the default setup in this study) from a raw image to get more robust prediction results,
and parallel computing will make the total prediction time almost unchanged.

Compared with the state-of-the-art autofocus methods (Table 1), our autofocus method
demonstrates a new idea to estimate the defocus distance: using the data-driven method to
decode the defocus information from the captured raw image itself. In contrast, conventional
methods use additional hardware such as extra illuminations or multiple shots to modulate the
axial defocus information to image planes. The advantages of our autofocus method come
from at least four aspects: First, we collect large training data (500 z-stacks each for HE, IHC,
and TCT). Second, instead of using the original image for focus prediction, we use the patch
sampling approach to divide the field of view of the captured image, hence getting a finer and
more accurate focus (eg. a tilted sample). We also update the defocus label for each patch
to compensate for focus variations at different patches. Third, the two strategies (single focus
adjustment or axial scan) we used when handling uneven focus. Fourth, the efficient network
structure of the MobileNetV3_small.Our autofocus method still shows room for improvement
due to its novelty. One limitation is that we do not yet consider motion blur which is caused by
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fast stage movement. The ability to predict the defocus distance of images with motion blur
can avoid interrupting pathologists’ slide reading process on the ARM. For WSI system, the
ability to predict the defocus distance of images with motion blur can also improve the focus map
surveying efficiency hence shortening the time of the pathological diagnosis cycle.

The single-shot autofocus method is universal and should not be limited to the ARM and
WSI system. For live-cell imaging or time-lapse imaging, a popular autofocus platform is the
Nikon Perfect Focus System [9] which performs autofocus with a reference infrared beam to
track the slide surface’s fluctuation. The drawback of the Nikon perfect focus system and related
autofocus techniques is that if the live cell or other moving target grows or moves above or below
the reference plane, the autofocus will fail. Since our autofocus method is image-based, we can
perform consistent autofocus for our interested target such as the live-cell which is easy to be
located and separated from the background.

In summary, we report a single-shot autofocus method using a lightweight deep learning
network for microscopy. We also propose a specific scheme of autofocus ARM using the
autofocus network and the liquid tunable lens. We also incorporate this autofocus method into
WSI system for focus map surveying. Compared with the state-of-the-art deep learning-based
autofocus method, our approach is significantly more accurate and easier to deploy. Hence, our
work will allow ARM and related AI products to enter the pathology department to support the
limited pathologist workforce. We believe our paper provides a new idea for autofocus not just
limited to ARM and WSI systems but can also find use in life science imaging, photography, and
industrial machine vision.

Fig. 6. The architecture of our single-shot autofocus deep learning network. (a) shows the
single-shot autofocus network which is modified from the MobileNetV3-small. The network
inputs an RGB image patch captured at an arbitrary focal plane and outputs the predicted
defocus distance. (b) shows the inside of bottleneck blocks in a.
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Appendix A: Architecture of the single-shot autofocus network

Figure 6 shows our single-shot autofocus network which is modified from the MobileNetV3-small
[25]. First, we change the input size to 672*672 from 224*224 to cover a larger field of view for
reliable prediction. Second, we change the classification output to regression output. We adopt
the Adam optimizer and smooth L1-loss for the autofocus network. To get maximal autofocus
performance, we use population-based training(PBT) [35], a hyperparameter optimization method,
to search the best dropout, learning rate, momentum, weight_decay, width_mult, etc.

Appendix B: IHC AI algorithm

The IHC AI algorithm [2] encodes contextual features from multiple image levels via convolutional
neural networks (ResNet-18 backbone) and produces probability maps by integrating upsampled
feature maps towards the final detection of cell centroids and segmentation of tumors [36,37].
Receptive fields of different sizes are employed to detect nucleus centroids and delineate tumor
regions since the former focuses more on relatively local information while the latter proves to
benefit from grasping the global view of the entire IHC image patch.

Appendix C: Brenner gradient

We use the Brenner gradient [26,27], an efficient and robust edge detector, as the figure of merit
to evaluate the sharpness of the image. The Brenner gradient value of an image is calculated as
follows:

B =
N∑︂

i=1

M∑︂
j=1

[s(i, j) − s(i + 2, j)]2

This algorithm computes the first difference between a pixel and its neighbor with a distance of 2.
s(i, j) is the pixel value at (i, j) coordinate position. N and M represent the number of pixels in
the i and j directions. B is the final Brenner gradient value.

Appendix D: Calibration curve of liquid lens focus power in current versus defo-
cus distance

We install the camera and tunable lens as shown in Fig. 1(a) on the motorized HDS motorized
microscope (based on the BX43 microscope with 10X/NA0.3). The parfocal is adjusted when the
current of the liquid lens is set to 0 mA. Then, we set the current of the tunable lens to -120 mA
and adjust the motorized Z-stage to find the focal plane with the Brenner gradient, as the first
point shown in Fig. 7. We get the whole calibration curve in the same manner with a current step
size of 10 mA.

Fig. 7. The calibration curve of liquid lens focus power in current versus defocus distance
under 10X/NA objective lens.
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